Control of SVC based on the sliding mode control method
نویسندگان
چکیده
A genetic algorithm (GA)-based sliding mode controller is proposed to improve the voltage stability of a power system with a static var compensator. The proposed controller is examined for improving the load bus voltage, which changes under different demanding powers, and its performance for transient analysis is compared with the Ziegler– Nichols proportional-integral (ZNPI), Lyapunov-based sliding mode control (LASMC), and GA-based proportionalintegral-derivative (GAPID) controllers. The dynamic equations, consisting of a 2-bus nonlinear system, are converted to a mathematical description of sliding mode techniques. The optimum values of the sliding mode controller and proportional-integral-derivative (PID) coefficients that are required are calculated using the GA technique. Output voltage performances are obtained based on the demanding powers, which are at a constant variation. In this process, sliding mode, ZNPI, GAPID, and LASMC controllers are preferred in order to control the system. The results show that the GA sliding mode controller method is more effective than the ZNPI, GAPID, and LASMC controllers in voltage stability enhancement.
منابع مشابه
Eliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic
In industrial robotic manipulator, due to the presence of quite nonlinear dynamic and structural and nonstructural uncertainties, a precise model is not easily obtained. As a result, designing a controller with a suitable function based on system model is a challenging issue. Sliding mode control is a robust control with numerous applications which can overcome the aforementioned uncertainties....
متن کاملDesign and Implementaion of Interior Permanent Magnet Synchronous Motor (IPMSM) Control based on Integral Terminal Sliding Mode Technique
Permanent Magnet Synchronous Motor because of high energy storage capability is very important in electrical drive industry. Speed control of this motor suffers from parameter variations such as variable inductance. In this paper, The Integral-Terminal Sliding Mode Control (ITSMC) method is used to control the speed (torque) along with d-axis current control. This method is like to classic slid...
متن کاملAN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION
This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...
متن کاملA Dissipative Integral Sliding Mode Control Redesign Method
This paper develops a new method of integral sliding mode control redesign for a class of perturbed nonlinear dissipative switched systems by modifying the dissipativity-based control law that was designed for the unperturbed systems. The nominal model is considered affine with matched and unmatched perturbations. The redesigned control law includes an integral sliding-based control signal such...
متن کاملSliding-Mode-based Improved Direct Active and Reactive Power Control of Doubly Fed Induction Generator under Unbalanced Grid Voltage Condition
This paper proposes an improved direct active and reactive power control (DPC) strategy for a grid-connected doubly fed induction generator (DFIG) based wind-turbine system under unbalanced grid voltage condition. The method produces required rotor voltage references based on the sliding mode control (SMC) approach in stationary reference frame, without the requirement of synchronous coordinate...
متن کاملNeuro-fuzzy Sliding Mode Controller Based on a Brushless Doubly Fed Induction Generator
The combination of neural networks and fuzzy controllers is considered as the most efficient approach for different functions approximation, and indicates their ability to control nonlinear dynamical systems. This paper presents a hybrid control strategy called Neuro-Fuzzy Sliding Mode Control (NFSMC) based on the Brushless Doubly fed Induction Generator (BDFIG). This replaces the sliding surfa...
متن کامل